Геодезическая сеть

Сегодня предлагаем ознакомиться с темой: "геодезическая сеть" с описанием от профессионалов и комментариями. Любые вопросы вы можете задать дежурному юристу.

Геодезические сети представляют собой определённые точки, обозначенные на карте местности путём проведения геодезических измерений. Они служат в качестве опорных точек при определении границ отдельных земельных владений. Кроме того, они служат научно-изыскательским целям, целям проектировки отдельных хозяйственных объектов. В зависимости от назначения выделяют плановые или высотные виды геодезических сетей.

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Fzhiloepravo.com%2Fwp-content%2Fuploads%2F2017%2F09%2Fi-7-5

Основной задачей геодезических сетей является определение с установленной точностью места расположения опорных точек на местности. Такие точки называются геодезическими пунктами.

В отличие от обычных точек на карте геодезические пункты представляют собой целую площадь со строго определённым центром. Данный центр служит взаимосвязанности нескольких смежных сетей между собой. Основной деталью является маркер центра, который и служит отправной точкой при проведении тех или иных геодезических работ.

Систему, состоящую из нескольких таких пунктов, называют плановой сетью. Основным требованием к образованию сети является их взаимосвязь между собой, определённая не менее чем двумя измеренными элементами. В целях измерений используются расстояние между пунктами, а также углы.

Для удобства анализа систем опорных точек их составляют в виде простейших геометрических фигур. Поэтому каждый измеренный показатель представляет собой сторону данной фигуры, без которой сеть считается неполной. Вершинами каждой фигуры признаются именно геодезические пункты.

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Fzhiloepravo.com%2Fwp-content%2Fuploads%2F2017%2F09%2Fi-18

В основном выделяются следующие методы построения:

Сущность метода триангуляции состоит в построении системы в виде взаимосвязанных треугольных фигур, имеющих между собой хотя бы одну смежную сторону. При этом для определения расстояния между геодезическими пунктами используют угловые значения во взаимном расположении двух и более геодезических пунктов.

Полигонометрия представляет собой систему измерений расстояния между двумя точками и угла между ними. При этом конечная фигура может быть представлена в виде многоугольника, как разомкнутого, так и завершённого. Это происходит в зависимости от выбора геодезических пунктов и угла между ними. Такой метод позволяет измерить ограниченные площади земли.

Трилатерация является производной от метода триангуляции и представляет собой определение геодезической планировки по всем сторонам образуемых треугольников. При этом специалисты могут комбинировать различные методы.

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Fzhiloepravo.com%2Fwp-content%2Fuploads%2F2017%2F09%2Fi-1-9

Такие опорные пункты создаются с высокой точностью для производства измерительных работ высоты отдельных пунктов земной поверхности. За основу создания такой системы в России геодезия берёт Балтийскую систему.

Данная система определяет абсолютное нулевое значение поверхности моря. Делается это благодаря специальной установке, которая находится на мосту через один из заливов в Балтийском море.

Балтийское море выбрано неслучайно. Именно здесь поверхность моря отличается относительной стабильностью.

Такие измерения, как в Балтийском море, проводятся во всех странах, имеющих выход к мировому океану. Обычно уточнение уровня моря производится в соотношении показателей нескольких постоянных и временных установок.

Для переложения данных с уровня моря на континентальную сушу по всей местности устанавливаются так называемые реперы, которые призваны сохранять точность относительно показателей пунктов замера уровня моря. Положение реперов со временем меняется в зависимости от изменения уровня моря, так что по всей стране обеспечивается единая система вычисления высоты отдельных объектов.

Государственной системой геодезических пунктов признаётся вся совокупность таких точек, которая определена по всей стране. Такая планировка образуется для устранения расхождения в измерениях в различных частях страны, особенно смежных между собой.

Создание такого плана является сложной, дорогостоящей работой, ответственность за которую несёт специально уполномоченная государственная служба. По этой причине уже созданные геодезические сети пытаются сохранить, несмотря на изменение и установление частных систем и опорных точек. По этой причине часто можно обнаружить расхождения между геодезическими данными отдельной местности и всей России.

По своему назначению геодезическая сеть государства может подразделяться на сегменты:

  • плановые;
  • высотные.

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Fzhiloepravo.com%2Fwp-content%2Fuploads%2F2017%2F09%2F20170130173941

Сети, создаваемые на основе большей по размеру системы, называются сгущёнными. В основном они создаются для ограниченных и небольших территорий, отдельных населённых пунктов, административных единиц.

При создании таких систем используются опорные точки, которые уже были определены планировкой высшего порядка. Такие опорные точки дополняются другими, и создаются более сокращённые по площади фигуры геодезической системы.

Назначением таких сетей является создание опорных точек для более точного определения границ мелких земельных участков, отдельных владений в рамках населённого пункта при проведении межевых работ, планирования строительных работ и т. д.

Как и общая государственная система, сгущённая сеть, или как её ещё называют – местная, подразделяется на высотную и плановую.

К примеру, высотные систем опорных точек местного значения создаются при недостаточности показаний государственных реперов для проведения измерительных работ для отдельных объектов местного значения.

Съёмочные сети – это те же самые сгущённые сети, создаваемые для производства топографической съёмки местности.Такие сети могут создаваться в несколько уровней, которые служат обоснованием одна для другой.Но в отличие от сетей сгущения геодезических пунктов в съёмочной системе гораздо больше.

Читайте так же:  Как подтвердить родство с умершим

Так, на одну фигуру триангуляции в такой планировке приходится опорных точек в десять раз больше, чем в сети сгущения. И точность таких систем гораздо выше.

В ходе создания подобной сети уже меньше используются вычислительные формулы, а больше делается упор на непосредственное механическое измерение местности. Таким образом, углы измеряются теодолитом, а расстояния между опорными точками обычным шагомером или простой рулеткой.

Однако конечный результат, отражаемый на геодезической карте, имеет форму выбранного метода измерения. Ведь полученные практическим методом данные проверяются по математическим и геометрическим формулам, а полученные результаты должны соответствовать друг другу с точностью 100%.

При создании такой сети используются следующие методы:

  1. Метод теодолитного хода.
  2. Микротриангуляция.

Метод теодолитного хода, как уже говорилось, проводится путём выяснения углового соотношения двух определённых между собой опорных точек.

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Fzhiloepravo.com%2Fwp-content%2Fuploads%2F2017%2F09%2Fi-3-7

Ранее для создания систем опорных точек и проведения измерительных работ использовались инварные проволоки. С появлением возможности оптического измерения и измерения при помощи радиоволн работа специалистов значительно облегчилась, а их производительность и точность многократно выросла.

На сегодняшний день используются следующие инструменты:

  • теодолиты;
  • нивелиры;
  • кипрегели.

Каждый из этих приборов имеет множество моделей с тем или иным классом точности. Выбор оборудования зависит от требований точности и возможностей рабочей группы.

Таким образом, геодезические сети имеют большое значение для землемерных работ. Вместе с тем такие работы являются сложными и требуют специальных знаний и оборудования.

Основой всех топографических съемок и инженерно-геодезических работ являются геодезические сети. С логической точки зрения геодезические сети (ГС) представляют собой некоторые геометрические построения на земной поверхности. С физической точки зрения геодезическая сеть — система закрепленных на местности точек, положение которых определено в общей для них системе геодезических координат и (или) высот. Геодезические сети подразделяются на плановые и высотные.

Основным принципом создания и плановых, и высотных геодезических сетей является принцип «от общего к частному»: вначале создаются более точные, но более разреженные геодезические сети в целях наиболее быстрого распространения единой системы координат и (или) высот на определенную территорию, а затем в порядке их развития и по мере необходимости — менее точные и более плотные сети.

Плановые геодезические сети. В плановых ГС различают государственную геодезическую сеть, геодезическую сеть сгущения и съемочную геодезическую сеть. Государственная геодезическая сеть (ГГС) представляет собой геодезическую сеть, обеспечивающую распространение единой системы координат на территории государства и являющуюся основой для построения других геодезических сетей [2]. Государственная геодезическая сеть отличается сравнительно невысокой плотностью точек и наивысшей точностью измерений. Геодезическая сеть сгущения (ГСС) — геодезическая сеть, предназначенная для развития государственной геодезической сети. Геодезические сети сгущения создаются заблаговременно для увеличения плотности точек ГГС. Съемочная геодезическая сеть (СГС) является обоснованием для выполнения топографических съемок и инженерно-геодезических работ и создается по мере необходимости непосредственно перед выполнением указанных работ. Перечисленные геодезические сети в свою очередь в зависимости от точности выполняемых измерений подразделяются на классы и разряды (табл. 8.1).

Классификация геодезических сетей

Государственная геодезическая сеть

Геодезическая сеть сгущения

1-й и 2-й разряды

III и IV классы

Теодолитные ходы Микротриангуляция

Геодезическая сеть может рассматриваться как реально существующий физический объект и как математический объект. Физически геодезическая сеть представляет собой множество закрепленных на земной поверхности точек — пунктов геодезической сети. Геодезическим пунктом называют пункт геодезической сети. С каждым геодезическим пунктом связаны геодезический знак и центр геодезического пункта. Геодезический знак есть устройство или сооружение, обозначающее положение геодезического пункта на местности. Геодезические пункты закрепляются на местности специальными центрами геодезических пунктов в целях их долговременного сохранения. Центр геодезического пункта — устройство, служащее носителем координат геодезического пункта. Центр геодезического пункта имеет марку. Марка центра геодезического пункта — деталь центра геодезического пункта, имеющая метку, к которой относят его координаты [2]. Обычно такой меткой является накернованное отверстие или крестообразная насечка на ме

таллической пластине или другом предмете — детали геодезического центра.

Рис. 8.1. Пример центра

Пример центра геодезического пункта приводится на рис. 8.1. Такие центры представляют собой установленные один на другой бетонные блоки с металлическими марками вверху, имеющими крестообразные насечки или накернованные отверстия. Конструкция центров геодезических пунктов зависит от климатических условий, грунтов и глубины их промерзания. Для пре-

дотвращения случайного уничтожения центры имеют, как правило, две или три марки, расположенные одна над другой на одной отвесной линии. Если одна или две верхние марки будут уничтожены, положение центра можно восстановить по сохранившейся нижней марке.

Для обеспечения видимости с геодезического пункта на сосед

ние и с соседних пунктов сети на данный пункт над ними устанавливаются геодезические знаки в виде пирамиды, сигнала или тура. Туры представляют собой каменные, кирпичные или бетонные столбы над маркой и устанавливаются на остроконечных вершинах с открытым горизонтом. Пирамиды могут быть трех-или четырехгранными, деревянными или металлическими и устанавливаются в горной или холмистой и безлесной местности, когда есть видимость с земли на соседние пункты. Высота пирамид составляет 5—8 м. Сигналы могут быть простыми или сложными. Простой сигнал представляет собой конструкцию из двух изолированных друг от друга пирамид (рис. 8.2). Внутренняя пирамида служит подставкой для геодезического прибора (теодолита или светодальномера). Наружная пирамида предназначена для использования в качестве платформы для наблюдателя и визирной цели. Высота простых сигналов доходит до Юм.

Читайте так же:  Существенные условия договора дарения

Сложные сигналы состоят из внутренней пирамиды, опирающейся на столбы внешней пирамиды, их высота может достигать 40 м. Для наблюдений с соседних пунктов на турах, пирамидах и сигналах устанавливаются визирные цилиндры, ось которых должна располагаться на одной отвесной линии с центром пункта.

Схемы и внешний вид пирамид и сигналов представлены на рис. 8.2 и 8.3.

На застроенных территориях в связи с земляными работами находящиеся в земле пункты часто уничтожаются, по-

Рис. 8.2. Схема простого (а) и сложного (б) сигналов

Рис. 8.3. Внешний вид пирамиды (о) и сигнала (б)

этому в целях долговременной сохранности геодезических пунктов практикуется их закрепление в стенах капитальных зданий и сооружений, например, в виде настенных пунктов полигонометрии.

Закрепленные на местности геодезические пункты не представляют какой-либо ценности без их координат, в связи с чем физически существующая в виде совокупности пунктов геодезическая сеть представляется каталогом координат геодезических пунктов — систематизированным перечнем, в котором для каждого пункта указываются его название, класс, прямоугольные координаты и абсолютная высота центра, дирекционные углы направлений на соседние пункты сети или на видимые с земли специально создаваемые ориентирные пункты. Названные каталоги формируются либо по листам карт масштаба 1:200 000, либо по объектам работ. Каталоги дополняются схемами геодезической сети, описаниями центров и другой информацией, которая может оказаться полезной при использовании геодезической сети.

Как математический объект геодезическая сеть представляет собой совокупность тех или иных геометрических объектов. Плановые геодезические сети представляют собой некоторые линейноугловые построения. В зависимости от геометрических величин, измеряемых в этих построениях, выделяют различные методы создания плановых геодезических сетей. Методами построения плановых сетей являются триангуляция, полигонометрия и трилатера-ция. Триангуляция представляет собой сплошную сеть треугольников, в которой измеряются все углы в каждом треугольнике и одна или несколько сторон треугольников в целях масштабирования сети. Триангуляция была предложена голландским ученым Снеллиусом в 1615—1617 гг., она позволила сравнительно быстро создавать геодезические сети на больших территориях и до конца 1900-х гг. являлась основным способом создания плановых геодезических сетей.

Полигонометрия — геодезическое построение в виде системы ломаных линий, называемых полигонометрическими ходами, в которых измерены углы между смежными сторонами и длины всех сторон. Трилатерация — сеть треугольников, в которой измерены все их стороны.

Классическая государственная геодезическая сеть представляет собой астрономо-геодезическую сеть. Ее основой служат звенья (цепочки) треугольников триангуляции 1-го класса длиной около 200 км, вытянутые вдоль параллелей и меридианов и образующие полигоны с периметром примерно 800 км (рис. 8.4). Стороны треугольников триангуляции 1-го класса составляют величину порядка 20—25 км. На территории СССР было создано около 6000 пунктов 1-го класса, образовавших 87 полигонов. В углах таких полигонов создавались астрономические пункты, или пункты Лапласа, на каждом из которых астрономическим способом измерялись его геодезическая широта В, долгота Ь и азимут А какой-либо стороны. Все указанные величины измерялись с погрешностью не более 0,5″. Кроме того, в углах таких полигонов измерялись стороны, называемые базисами.

Изображение - Геодезическая сеть proxy?url=http%3A%2F%2Fstudref.com%2Fim%2F40%2F5567%2F792587-167

  • 2
  • *

Рис. 8.4. Схема триангуляции 1-го класса

Рис. 8.5. Схема триангуляции 3-4-го классов

Длина сторон — 20—25 км. Ошибка измерения горизонтальных углов — не более 0,7″. Относительная ошибка измерения базисов — не более 1:400 000. Ошибка измерения широты — не более 0,3″. Ошибка измерения долготы — не более 0,3 5 . Ошибка измерения азимута — не более 0,5″.

Длина сторон — 7—20 км. Ошибка измерения горизонтальных углов — не более 1″. Относительная ошибка измерения базисов — не более 1:300 000.

Ошибка измерения широты — не более 0,3″. Ошибка измерения долготы — не более 0,3 9 . Ошибка измерения азимута — не более 0,5″.

Характеристики триангуляции 3-го класса

Длина сторон — 5—8 км. Ошибка измерения горизонтальных углов — не более 1,5″. Относительная ошибка измерения базисов — не более 1:200 000.

Характеристики триангуляции 4-го класса

Нет видео.
Видео (кликните для воспроизведения).

Длина сторон — 2—5 км. Ошибка измерения горизонтальных углов — не более 2,0″. Относительная ошибка измерения базисов — не более 1:200 000.

Внутри полигонов 1-го класса создается заполняющая (сплошная) сеть триангуляции или полигонометрии 2-го класса. Расстояния между пунктами 2-го класса составляют величину порядка 7—20 км. Дальнейшее сгущение геодезической сети осуществляется путем вставки одного или нескольких пунктов 3-го и 4-го классов (рис. 8.5) с использованием типовых фигур, представленных на рис. 8.6. Общее число пунктов плановых геодезических сетей 1—4-го классов, созданных на территории СССР, составляет примерно 350 тысяч. Точность их взаимного положения, по некоторым оценкам, составляет примерно 10 см.

Читайте так же:  Сведения о долге за газ по лицевому счёту

Изображение - Геодезическая сеть proxy?url=http%3A%2F%2Fstudref.com%2Fim%2F40%2F5567%2F792587-170

Изображение - Геодезическая сеть proxy?url=http%3A%2F%2Fstudref.com%2Fim%2F40%2F5567%2F792587-171

Изображение - Геодезическая сеть proxy?url=http%3A%2F%2Fstudref.com%2Fim%2F40%2F5567%2F792587-173

Изображение - Геодезическая сеть proxy?url=http%3A%2F%2Fstudref.com%2Fim%2F40%2F5567%2F792587-174

Рис. 8.6. Типовые фигуры геодезической сети сгущения:

А — исходный пункт; о — определяемый пункт; 1 — треугольник; 2 — вставка в треугольник; 3 — вставка в жесткий угол; 4 — геодезический четырехугольник;

5 — веер; 6 — цепь треугольников

Государственная геодезическая сеть в виде плановых геодезических сетей 1—4-го классов представляет собой классическую геодезическую сеть, создававшуюся трудом многих тысяч профессиональных геодезистов в течение нескольких десятков лет. В настоящее время в связи с повышением требований к точности определения геометрических величин на земной поверхности и с новыми способами таких определений был осуществлен пересмотр структуры геодезической сети. В дополнение к классической ГГС создается новая, более точная спутниковая геодезическая сеть с использованием глобальной навигационной спутниковой системы (ГНСС), названная государственной геодезической системой координат (ГГСК).

Спутниковая геодезическая сеть по точности и плотности пунктов подразделяется на три уровня: фундаментальную астрономо-геодезическую сеть (ФАГС), высокоточную спутниковую геодезическую сеть (ВГС), спутниковую геодезическую сеть 1-го класса (СГС—1) и дополняется описанной выше ГГС.

ФАГС содержит 50 постоянно действующих пунктов, ведущих наблюдения за спутниками российской Глобальной навигационной спутниковой системы (ГЛОНАСС) и американской Global Position System (GPS). В дальнейшем, по завершении создания Европейской спутниковой системы Galileo, предполагается использование и ее спутников. Среднее расстояние между пунктами ФАГС равно примерно 1500 км. Назначением ФАГС является определение изменений координат во времени, вызванных глобальными геодина-мическими процессами — движением тектонических плит. На земной поверхности это движение проявляется в виде дрейфа материков по отношению друг к другу. Указанные изменения координат на земном шаре в среднем составляют величину около 3 см в год. Для некоторых регионов эта величина существенно больше, так, например, для Австралии с 1999 по 2010 г. изменение координат достигло величины 56 см.

ВГС состоит из 300 пунктов, на которых в зависимости от геотектонической активности региона периодически (через 5—10 лет) выполняются повторные наблюдения. Расстояния между пунктами ВГС колеблются в пределах от 300 до 500 км.

СГС—1 содержит примерно 4500 пунктов, часть этих пунктов совмещена с пунктами ГГС 1—4-го классов. На пунктах СГС—1 наблюдения спутников выполняются однократно. Среднее расстояние между пунктами СГС—1 равно 30 км.

Традиционная ГГС является наименее точным и наиболее плотным компонентом ГГСК. Точность взаимного положения пунктов ФАГС, ВГС и СГС—1 составляет 1—2 см. Точность взаимного положения соседних пунктов ГГС после совместной обработки с результатами наблюдений в спутниковой геодезической сети составит около 3—5 см, что вполне достаточно для обеспечения точности топографических планов самого крупного масштаба (1:500).

Геодезические сети сгущения создаются методами триангуляции и полигонометрии 1-го и 2-го разрядов (табл. 8.2 и 8.3).

Съемочная геодезическая сеть создается с таким расчетом, чтобы ошибки положения пунктов в масштабе плана не превышали 0,2 мм на открытой местности и 0,3 мм — в закрытой местности. Съемочная геодезическая сеть чаще всего создается в виде отдельных теодолитных ходов или их систем, на открытой местности — в виде триангуляционных построений и различного рода засечек.

Характеристики триангуляции 1-го и 2-го разрядов

Государственная геодезическая сеть (ГГС) — система закрепленных на местности пунктов, положение которых определено в единой системе координат и высот.

ГГС предназначена для решения следующих основных задач, имеющих хозяйственное, научное и оборонное значение:
– установление и распространение единой государственной системы геодезических координат на всей территории страны и поддержание ее на уровне современных и перспективных требований;
– геодезическое обеспечение картографирования территории России и акваторий окружающих ее морей;
– геодезическое обеспечение изучения земельных ресурсов и землепользования, кадастра, строительства, разведки и освоения природных ресурсов;
– обеспечение исходными геодезическими данными средств наземной, морской и аэрокосмической навигации, аэрокосмического мониторинга природной и техногенной сред;
– изучение поверхности и гравитационного поля Земли и их изменений во времени;
– изучение геодинамических явлений;
– метрологическое обеспечение высокоточных технических средств определения местоположения и ориентирования.

Геодезические высоты пунктов ГГС определяют как сумму нормальной высоты и высоты квазигеоида над отсчетным эллипсоидом или непосредственно методами космической геодезии, или путем привязки к пунктам с известными геоцентрическими координатами. Нормальные высоты пунктов ГГС определяются в Балтийской системе высот 1977 года, исходным началом которой является нуль Кронштадтского футштока. Карты высот квазигеоида над общим земным эллипсоидом и референц-эллипсоидом Красовского на территории Российской Федерации издаются Федеральной службой геодезии и карто-графии России и Топографической службой ВС РФ.

Масштаб ГГС задается Единым государственным эталоном времени-частоты-длины.

В работах по развитию ГГС используются шкалы атомного ТA (SU) и координированного UTC (SU) времени, задаваемые существующей эталонной базой Российской Федерации, а также параметры вращения Земли и поправки для перехода к международным шкалам времени, периодически публикуемые Госстандартом России в специальных бюллетенях Государственной службы времени и частоты (ГСВЧ).

Читайте так же:  Налог на второе жилье

Астрономические широты и долготы, астрономические и геодезические азимуты, определяемые по наблюдениям звезд, приводятся к системе фундаментального звездного каталога, к системе среднего полюса и к системе астрономических долгот, принятых на эпоху уравнивания ГГС.

Метрологическое обеспечение геодезических работ осуществляется в соответствии с требованиями государственной системы обеспечения единства измерений.

Все геодезические сети можно разделить по следующим признакам:
По территориальному признаку:
1) глобальная
2) национальные (ГГС)
3) сети специального назначения (ГССН)
4) съемочные сети
по геометрической сущности:
1) плановые
2) высотные
3) пространственные

Глобальные сети создаются на всю поверхность Земли спутниковыми методами, являясь пространственными с началом координат в центре масс Земли и определяемые в системе координат ПЗ-90.
Национальные сети делятся на: Государственную геодезическую сеть (ГГС) с определением координат в СК-95 в проекции Гаусса-Крюгера на плоскости и на Государственную нивелирную сеть (ГНС) с определением нормальных высот в Балтийской системе, т.е. от нуля Кронштадтского футштока.
Геодезические сети специального назначения (ГССН) создаются в тех случаях, когда дальнейшее сгущение пунктов ГГС экономически нецелесообразно или когда требуется особо высокая точность геодезической сети. В зависимости от назначения эти сети могут быть плановыми, высотными, планово-высотными и даже пространственными и создаваться в любой системе координат.
Съемочные сети являются обоснованием для выполнения топосъемок и создаются обычно планово-высотными.

ГГС структурно формируется по принципу перехода от общего к частному и включает в себя геодезические построения различных классов точности:
фундаментальную астрономо-геодезическую сеть (ФАГС)
высокоточную геодезическую сеть (ВГС),
спутниковую геодезическую сеть 1 класса (СГС-1)

В указанную систему построений вписываются также существующие сети триангуляции и полигонометрии 1-4 классов. На основе новых высокоточных пунктов спутниковой сети создаются постоянно действующие дифференциальные станции с целью обеспечения возможностей определения координат потребителями в режиме близком к реальному времени.

По мере развития сетей ФАГС, ВГС и СГС-1 выполняется уравнивание ГГС и уточняются параметры взаимного ориентирования геоцентрической системы координат и системы геодезических координат СК-95.

Плотность размещения пунктов ГГС следующая:
масштаб 1 пункт на: сред. расст.
1:25000 50-60 км 2 7-8 км
1:10000 50-60 км 2 7-8 км
1:5000 20-30 км 2 5-6 км
1:2000 5-15 км 2 2-4 км

Ошибка длины: ms = 0.25 mM ,
где m — графическая ошибка длины на карте, M — знаменатель масштаба.

На каждом пункте существующей ГГСН в соответствии с «Инструкцией о построении государственной геодезической сети», М., Недра, 1966 г. определяются по два ориентирных пункта с подземными центрами, пронумерованные от направления на север по часовой стрелке, на расстоянии от центра пункта не менее 500 м в открытой и 250 м в занесенной местности, с обеспечением видимости на них непосредственно с центра.

Высоты всех пунктов ГГС определены в основном тригонометрическим нивелированием по сторонам сети от пунктов, принятых за опорные, которые определены геометрическим нивелированием и расположены не реже чем 3 стороны полигонометрии или 75 км в сети триангуляции.

Различают плановые, высотные и пространственные сети. Плановые сети – это такие, в которых определены плановые координаты (плоские – x, y или геодезические – широта B и долгота L) пунктов. В высотных сетях определяют высоты пунктов относительно отсчетной поверхности, например, поверхности геоида (а точнее – квазигеоида). В пространственных сетях определяют пространственные координаты пунктов, например, прямоугольные геоцентрические X, Y, Z или геодезические B, L, H.

6.1. Методы построения плановых сетей

При построении плановых сетей отдельные пункты сети служат исходными – их координаты должны быть известны. Координаты остальных пунктов определяют с помощью измерений, связывающих их с исходными. Плановые геодезические сети создают следующими методами.

Триангуляция – метод определения планового положения геодезических пунктов путем построения на местности сети треугольников, в которых измеряют углы, а также длины некоторых сторон, называемых базисными сторонами (рис. 6.1).

Положим, что в треугольнике АВP известны координаты пунктов А (Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-121, Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-122) и B (Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-123, Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-124). Это позволяет путем решения обратной геодезической задачи определить длину стороны Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-125 и дирекционный угол Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-126 направления с пункта A на пункт B. Длины двух других сторон треугольника АВP могут быть вычислены по теореме синусов

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-127; Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-128.

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-129

Рис. 6.1. Схема сети триангуляции

Продолжая подобным образом, вычисляют длины всех сторон сети. Если, кроме базиса b известны другие базисы (на рис. 6.1 базисы показаны двойной линией), то длины сторон сети можно вычислить с контролем.

Дирекционные углы сторон АP и ВP треугольника АВP равны

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-130; Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-131.

Координаты пункта P определятся по формулам прямой геодезической задачи

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-132; Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-133.

Аналогично вычисляют координаты всех остальных пунктов.

Трилатерация – метод определения планового положения геодезических пунктов путем построения на местности сети треугольников, в которых измеряют длины их сторон.

Если в треугольнике АВP (рис. 6.1) известен базис b и измерены стороны Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-134 и Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-135, то на основе теоремы косинусов, можно вычислить углы треугольника;

Читайте так же:  Что делать, если соседи сверху затопили квартиру

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-136;

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-137;

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-138. (6.1)

Так же вычисляют углы всех треугольников, а затем, как и в триангуляции, – координаты всех пунктов.

Линейно-угловая сеть строится, как правило, как сеть треугольников, в которых измеряют углы и длины сторон. Такие сети имеют большое число избыточных измерений и поэтому отличаются высокой надежностью.

Полигонометрия метод определения планового положения геодезических пунктов путем проложения ломаной линии (полигонометрического хода) или системы связанных между собой ломаных линий (сети полигонометрии), в которых измеряют углы поворота и длины сторон.

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-139

Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-140

Рис. 6.2. Полигонометрия: а – полигонометрический ход; б – система ходов

Схема полигонометрического хода показана на рис. 6.2 a, где A и B – исходные пункты; CA и BD – исходные направления, дирекционные углы которых известны; 1, 2, 3, 4, 5 – точки (вершины) хода; Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-141– измеренные горизонтальные углы;Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-142– измеренные длины сторон (i = 1, 2, …).

На рис. 6.2 б показана схема системы полигонометрических ходов. Точки 2, 4, 8, где соединяются разные ходы, называются узловыми.

Спутниковый метод определения координат геодезических пунктов основан на измерениях по сигналам спутников навигационных систем ГЛОНАСС (Россия) и GPS (США), выполняемых двумя (и более) наземными приемниками. По результатам измерений с высокой точностью определяют разности Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-143, Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-144, Изображение - Геодезическая сеть proxy?url=https%3A%2F%2Finjzashita.com%2Fimages%2Finj_geo_all%2Finj_geo_1-145 геоцентрических координат между пунктами. Если координаты одного из пунктов известны, то, прибавив к ним измеренные разности, находят координаты остальных пунктов. Затем координаты преобразуют в геодезические или плоские прямоугольные.

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8.

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов.

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем.

Основные закономерности татического деформирования грунтов

За последние 15. 20 лет в результате многочисленных экспериментальных исследований с применением рассмотренных выше схем испытаний получены обширные данные о поведении грунтов при сложном напряженном состоянии. Поскольку в настоящее время в…

Упругопластическое деформирование среды и поверхности нагружения

Деформации упругопластических материалов, в том числе и грунтов, состоят из упругих (обратимых) и остаточных (пластических). Для составления наиболее общих представлений о поведении грунтов при произвольном нагружении необходимо изучить отдельно закономерности…

Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний

При исследовании грунтов, как и конструкционных материалов, в теории пластичности принято различать нагружение и разгрузку. Нагружением называют процесс, при котором происходит нарастание пластических (остаточных) деформаций, а процесс, сопровождающийся изменением (уменьшением)…

Инварианты напряженного и деформированного состояний грунтовой среды

Применение инвариантов напряженного и деформированного состояний в механике грунтов началось с появления и развития исследований грунтов в приборах, позволяющих осуществлять двух- и трехосное деформирование образцов в условиях сложного напряженного состояния…

О коэффициентах устойчивости и сопоставление с результатами опытов

Так как во всех рассмотренных в этой главе задачах грунт считается находящимся в предельном напряженном состоянии, то все результаты расчетов соответствуют случаю, когда коэффициент запаса устойчивости к3 = 1. Для…

Особенно эффективны методы теории предельного равновесия в задачах определения давления грунта на сооружения, в частности подпорные стенки. При этом обычно принимается заданной нагрузка на поверхности грунта, например, нормальное давление р(х), и…

Наиболее типичной задачей о предельном равновесии грунтовой среды является определение несущей способности основания под действием нормальной или наклонной нагрузок. Например, в случае вертикальных нагрузок на основании задача сводится к тому…

Задача оценки условий отрыва и определения требуемого для этого усилия возникает при подъеме судов, расчете держащей силы «мертвых» якорей, снятии с грунта морских гравитационных буровых опор при их перестановке, а…

Решения плоской и пространственной задач консолидации и их приложения

Нет видео.
Видео (кликните для воспроизведения).

Решений плоской и тем более пространственных задач консолидации в виде простейших зависимостей, таблиц или графиков очень ограниченное число. Имеются решения для случая приложения к поверхности двухфазного грунта сосредоточенной силы (В…

Изображение - Геодезическая сеть 129856318
Автор статьи: Петр Кошкин

Здравствуйте. Меня зовут Петр.  Я 8 лет работаю в юридической сфере консультантом. Считая себя экспертом и хочу научить всех посетителей сайта решать разнообразные задачи. Все данные для сайта собраны и тщательно переработаны для того чтобы донести в доступном виде всю нужную информацию. Перед применением описанного на сайте, всегда необходима консультация со специалистами.

Обо мнеОбратная связь
Оцените статью:
Оценка 4.7 проголосовавших: 13

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here